Road Safety Development

Czech Republic

Fatalities

Development

- 1990: New regime replaced the soviet system.
- 1990 1994: increase of fatalities (+5% annually).
 - Increase in traffic volume.
 - Change of driver behaviour (less strict police surveillance, more freedom, drivers not used to the new situation)
- 1994 2005: slow decrease of fatalities (less than 5% annually)
 - National safety strategy system
 - Measures: Seatbelt & helmet obligation, speed limits.
- 2006:
 - o Demerit point system was introduced
 - \circ $\;$ At first with strong media anti-campaign.
- 2007 2010: strong decrease (10% annually). [1]

Fatalities have shown a declining trend since 1994.

Since 2007

fatalities have decreased more quickly than before.

Road Safety Development – Czech Republic

- The number of fatalities normally depends strongly on the amount of traffic.
- The best estimate for traffic volume available is the number of vehicle kilometres (per million) that has been measured since 1995.
 - The vehicle kilometres show a rising trend.
 - With the exception of a small plateau around the millennium change, the vehicle kms rise in an almost straight line.
 - The number of vehicle kilometres is not affected by the recession in 2008.
- Relation between traffic volume and fatalities:
 - o No relation between fatalities and vehicle kms can be established.
 - No mobility scenario can be calculated.

Forecasting model:

Technical definition

- o Local Linear Trend model [5,2].
- Variable: yearly number of fatalities
- o Smooth trend model: fixed slope stochastic level.

Road Safety Development – Czech Republic

 If road safety is improved at the same rate as previously the following forecasts can be made for the number of fatalities in 2020:

Forecast of road-traffic fatalities in the Czech Republic

Year	Prediction	Lower CI	Upper CI
2011	740	619	885
2012	662	516	848
2013	592	423	828
2014	529	342	820
2015	473	273	820
2016	423	216	829
2017	378	169	846
2018	338	132	870
2019	303	102	902
2020	271	78	942

Disclaimer

- Statistical forecasting does not offer a definite prediction of what is *actually* going to happen in the future.
- The estimates are based on the "business as usual" assumption: no principal changes between past and future development.
- Even in these conditions future outcomes are uncertain. This uncertainty is represented in the confidence intervals (plotted in the red margins: 68%; printed in table: 95%).

Transport

Road Safety Development – Czech Republic

References

[1] EC National Expert for road accident statistics and road safety performance indicators.

[2] Dupont & Martensen (Eds.) 2012. Forecasting road traffic fatalities in European countries. Deliverable 4.4 of the EC FP7 project DaCoTA.

[3] Bijleveld F., Commandeur J., Gould P., Koopman S. J. (2008). Modelbased measurement of latent risk in time series with applications. Journal of the Royal Statistical Society, Series A, 2008.

[4] Martensen & Dupont (Eds.) 2010. Forecasting road traffic fatalities in European countries: model and first results. Deliverable 4.2 of the EC FP7 project DaCoTA.

[5] Commandeur, J. & Koopman, S.J. (2007). An Introduction to State Space Time Series Analysis. Oxford University Press.

