Road Safety Development

Luxembourg

Fatalities

- Around 125 fatalities have been registered in Luxembourg in 1975 against 32 in 2010, so almost 4 times less.
- The average annual decrease in the number of fatalities is 3%.

Registration of fatalities

 A fatality is defined as a death occurring within 30 days following an accident. A 100% registration can be assumed with confidence in the case of Luxembourg as far as fatalities are concerned.

Since 1975, the

annual number of

fatalities has decreased by 3% per year on

average

Road Safety Development - Luxembourg

Traffic volume in Luxembourg is for an important part attributable to foreign vehicles.

- The number of fatalities depends strongly on the amount of traffic (exposure). To forecast the fatalities, the development of exposure has to be forecasted first.
- The only estimate for exposure that is available in Luxembourg is the number of registered vehicles. This data is available from 1975 onwards.
- Traffic volume in Luxembourg depends to a large extent on foreign vehicles (workers living in the surrounding countries). The adequateness of vehicle fleet as an exposure indicator is thus questionable in this case.
- Development:
 - The number of registered vehicles has been increasing steadily since 1975
- Relation between traffic volume and fatalities:
 - No relation can be established between the number of fatalities and vehicle fleet.
 - No mobility scenario are calculated
 - Forecasting model (technical definition):
 - Local Linear Trend model [1]
 - Variable: yearly number of fatalities.
 - Fixed components: slope.

Road Safety Development - Luxembourg

Forecasts to 2020

If road safety is improved at the same rate as previously and the past development of mobility continues, the following can be expected for 2020:

Forecast of road-traffic fatalities in Luxembourg up to 2020

Year	Prediction	Lower CI	Upper CI
2011	39	32	46
2012	38	31	46
2013	37	29	46
2014	35	28	45
2015	34	26	45
2016	33	25	44
2017	32	24	44
2018	31	23	43
2019	31	22	43
2020	30	21	42
-			

Disclaimer

- Statistical forecasting does not offer a definite prediction of what is *actually* going to happen in the future.
- The estimates are based on the "business as usual" assumption: no principal changes between past and future development.
- Even in these conditions future outcomes are uncertain. This uncertainty is represented in the confidence intervals (plotted in the red margins: 68%; printed in table: 95%).

If RS efforts continue at the same level, around 30 fatalities are to be expected in 2020.

Road Safety Development - Luxembourg

References

[1] EC National Expert for road accident statistics and road safety performance indicators.

[2] Dupont & Martensen (Eds.) 2012. Forecasting road traffic fatalities in European countries. Deliverable 4.4 of the EC FP7 project DaCoTA.

[3] Bijleveld F., Commandeur J., Gould P., Koopman S. J. (2008), Modelbased measurement of latent risk in time series with applications. Journal of the Royal Statistical Society, Series A, 2008.

[4] Martensen & Dupont (Eds.) 2010. Forecasting road traffic fatalities in European countries: model and first results. Deliverable 4.2 of the EC FP7 project DaCoTA.

[5] Commandeur, J. & Koopman, S.J. (2007) An Introduction to State Space Time Series Analysis. Oxford University Press.

